Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Atmos Res ; 264: 105866, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1432964

ABSTRACT

The pandemic in 2020 caused an abrupt change in the emission of anthropogenic aerosols and their precursors. We estimate the associated change in the aerosol radiative forcing at the top of the atmosphere and the surface. To that end, we perform new simulations with the CMIP6 global climate model EC-Earth3. The simulations use the here newly created data for the anthropogenic aerosol optical properties and an associated effect on clouds from the simple plumes parameterization (MACv2-SP), based on revised SO2 and NH3 emission scenarios. Our results highlight the small impact of the pandemic on the global aerosol radiative forcing in 2020 compared to the CMIP6 scenario SSP2-4.5 of the order of +0.04 Wm-2, which is small compared to the natural year-to-year variability in the radiation budget. Natural variability also limits the ability to detect a meaningful regional difference in the anthropogenic aerosol radiative effects. We identify the best chances to find a significant change in radiation at the surface during cloud-free conditions for regions that were strongly polluted in the past years. The post-pandemic recovery scenarios indicate a spread in the aerosol forcing of -0.68 to -0.38 Wm-2 for 2050 relative to the pre-industrial, which translates to a difference of +0.05 to -0.25 Wm-2 compared to the 2050 baseline from SSP2-4.5. This spread falls within the present-day uncertainty in aerosol radiative forcing and the CMIP6 spread in aerosol forcing at the end of the 21st century. We release the new MACv2-SP data for studies on the climate response to the pandemic and the recovery scenarios. Our 2050 forcing estimates suggest that sustained aerosol emission reductions during the post-pandemic recovery cause a stronger climate response than in 2020, i.e., there is a delayed influence of the pandemic on climate.

2.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1124655

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

SELECTION OF CITATIONS
SEARCH DETAIL